LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiview Clustering via Proximity Learning in Latent Representation Space.

Photo from wikipedia

Most existing multiview clustering methods are based on the original feature space. However, the feature redundancy and noise in the original feature space limit their clustering performance. Aiming at addressing… Click to show full abstract

Most existing multiview clustering methods are based on the original feature space. However, the feature redundancy and noise in the original feature space limit their clustering performance. Aiming at addressing this problem, some multiview clustering methods learn the latent data representation linearly, while performance may decline if the relation between the latent data representation and the original data is nonlinear. The other methods which nonlinearly learn the latent data representation usually conduct the latent representation learning and clustering separately, resulting in that the latent data representation might be not well adapted to clustering. Furthermore, none of them model the intercluster relation and intracluster correlation of data points, which limits the quality of the learned latent data representation and therefore influences the clustering performance. To solve these problems, this article proposes a novel multiview clustering method via proximity learning in latent representation space, named multiview latent proximity learning (MLPL). For one thing, MLPL learns the latent data representation in a nonlinear manner which takes the intercluster relation and intracluster correlation into consideration simultaneously. For another, through conducting the latent representation learning and consensus proximity learning simultaneously, MLPL learns a consensus proximity matrix with k connected components to output the clustering result directly. Extensive experiments are conducted on seven real-world datasets to demonstrate the effectiveness and superiority of the MLPL method compared with the state-of-the-art multiview clustering methods.

Keywords: representation; multiview; proximity; multiview clustering; latent data; data representation

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.