Manifold learning-based face hallucination technologies have been widely developed during the past decades. However, the conventional learning methods always become ineffective in noise environment due to the least-square regression, which… Click to show full abstract
Manifold learning-based face hallucination technologies have been widely developed during the past decades. However, the conventional learning methods always become ineffective in noise environment due to the least-square regression, which usually generates distorted representations for noisy inputs they employed for error modeling. To solve this problem, in this article, we propose a modal regression-based graph representation (MRGR) model for noisy face hallucination. In MRGR, the modal regression-based function is incorporated into graph learning framework to improve the resolution of noisy face images. Specifically, the modal regression-induced metric is used instead of the least-square metric to regularize the encoding errors, which admits the MRGR to robust against noise with uncertain distribution. Moreover, a graph representation is learned from feature space to exploit the inherent typological structure of patch manifold for data representation, resulting in more accurate reconstruction coefficients. Besides, for noisy color face hallucination, the MRGR is extended into quaternion (MRGR-Q) space, where the abundant correlations among different color channels can be well preserved. Experimental results on both the grayscale and color face images demonstrate the superiority of MRGR and MRGR-Q compared with several state-of-the-art methods.
               
Click one of the above tabs to view related content.