LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Privacy Enhancing Machine Learning via Removal of Unwanted Dependencies

The rapid rise of IoT and Big Data has facilitated copious data-driven applications to enhance our quality of life. However, the omnipresent and all-encompassing nature of the data collection can… Click to show full abstract

The rapid rise of IoT and Big Data has facilitated copious data-driven applications to enhance our quality of life. However, the omnipresent and all-encompassing nature of the data collection can generate privacy concerns. Hence, there is a strong need to develop techniques that ensure the data serve only the intended purposes, giving users control over the information they share. To this end, this article studies new variants of supervised and adversarial learning methods, which remove the sensitive information in the data before they are sent out for a particular application. The explored methods optimize privacy-preserving feature mappings and predictive models simultaneously in an end-to-end fashion. Additionally, the models are built with an emphasis on placing little computational burden on the user side so that the data can be desensitized on device in a cheap manner. Experimental results on mobile sensing and face datasets demonstrate that our models can successfully maintain the utility performances of predictive models while causing sensitive predictions to perform poorly.

Keywords: via removal; learning via; enhancing machine; machine learning; privacy enhancing; removal unwanted

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.