In this brief, we define a self-limiting control term, which has the function of guaranteeing the boundedness of variables. Then, we apply it to a finite-time stability control problem. For… Click to show full abstract
In this brief, we define a self-limiting control term, which has the function of guaranteeing the boundedness of variables. Then, we apply it to a finite-time stability control problem. For nonstrict feedback nonlinear systems, a finite-time adaptive control scheme, which contains a piecewise differentiable function, is proposed. This scheme can eliminate the singularity of derivative of a fractional exponential function. By adding a self-limiting term to the controller and the virtual control law of each subsystem, the boundedness of the overall system state is guaranteed. Then the unknown continuous functions are estimated by neural networks (NNs). The output of the closed-loop system tracks the desired trajectory, and the tracking error converges to a small neighborhood of the equilibrium point in finite time. The theoretical results are illustrated by a simulation example.
               
Click one of the above tabs to view related content.