LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MMV-Net: A Multiple Measurement Vector Network for Multifrequency Electrical Impedance Tomography.

Photo from wikipedia

Multifrequency electrical impedance tomography (mfEIT) is an emerging biomedical imaging modality to reveal frequency-dependent conductivity distributions in biomedical applications. Conventional model-based image reconstruction methods suffer from low spatial resolution, unconstrained… Click to show full abstract

Multifrequency electrical impedance tomography (mfEIT) is an emerging biomedical imaging modality to reveal frequency-dependent conductivity distributions in biomedical applications. Conventional model-based image reconstruction methods suffer from low spatial resolution, unconstrained frequency correlation, and high computational cost. Deep learning has been extensively applied in solving the EIT inverse problem in biomedical and industrial process imaging. However, most existing learning-based approaches deal with the single-frequency setup, which is inefficient and ineffective when extended to the multifrequency setup. This article presents a multiple measurement vector (MMV) model-based learning algorithm named MMV-Net to solve the mfEIT image reconstruction problem. MMV-Net considers the correlations between mfEIT images and unfolds the update steps of the Alternating Direction Method of Multipliers for the MMV problem (MMV-ADMM). The nonlinear shrinkage operator associated with the weighted l2,1 regularization term of MMV-ADMM is generalized in MMV-Net with a cascade of a Spatial Self-Attention module and a Convolutional Long Short-Term Memory (ConvLSTM) module to better capture intrafrequency and interfrequency dependencies. The proposed MMV-Net was validated on our Edinburgh mfEIT Dataset and a series of comprehensive experiments. The results show superior image quality, convergence performance, noise robustness, and computational efficiency against the conventional MMV-ADMM and the state-of-the-art deep learning methods.

Keywords: electrical impedance; impedance tomography; multifrequency electrical; multiple measurement; multifrequency; mmv net

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.