LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast-Converging Simulated Annealing for Ising Models Based on Integral Stochastic Computing.

Probabilistic bits (p-bits) have recently been presented as a spin (basic computing element) for the simulated annealing (SA) of Ising models. In this brief, we introduce fast-converging SA based on… Click to show full abstract

Probabilistic bits (p-bits) have recently been presented as a spin (basic computing element) for the simulated annealing (SA) of Ising models. In this brief, we introduce fast-converging SA based on p-bits designed using integral stochastic computing. The stochastic implementation approximates a p-bit function, which can search for a solution to a combinatorial optimization problem at lower energy than conventional p-bits. Searching around the global minimum energy can increase the probability of finding a solution. The proposed stochastic computing-based SA method is compared with conventional SA and quantum annealing (QA) with a D-Wave Two quantum annealer on the traveling salesman, maximum cut (MAX-CUT), and graph isomorphism (GI) problems. The proposed method achieves a convergence speed a few orders of magnitude faster while dealing with an order of magnitude larger number of spins than the other methods.

Keywords: annealing ising; ising models; integral stochastic; simulated annealing; stochastic computing; fast converging

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.