LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust RGB-T Tracking via Graph Attention-Based Bilinear Pooling.

Photo by jontyson from unsplash

RGB-T tracker possesses strong capability of fusing two different yet complementary target observations, thus providing a promising solution to fulfill all-weather tracking in intelligent transportation systems. Existing convolutional neural network… Click to show full abstract

RGB-T tracker possesses strong capability of fusing two different yet complementary target observations, thus providing a promising solution to fulfill all-weather tracking in intelligent transportation systems. Existing convolutional neural network (CNN)-based RGB-T tracking methods often consider the multisource-oriented deep feature fusion from global viewpoint, but fail to yield satisfactory performance when the target pair only contains partially useful information. To solve this problem, we propose a four-stream oriented Siamese network (FS-Siamese) for RGB-T tracking. The key innovation of our network structure lies in that we formulate multidomain multilayer feature map fusion as a multiple graph learning problem, based on which we develop a graph attention-based bilinear pooling module to explore the partial feature interaction between the RGB and the thermal targets. This can effectively avoid uninformed image blocks disturbing feature embedding fusion. To enhance the efficiency of the proposed Siamese network structure, we propose to adopt meta-learning to incorporate category information in the updating of bilinear pooling results, which can online enforce the exemplar and current target appearance obtaining similar sematic representation. Extensive experiments on grayscale-thermal object tracking (GTOT) and RGBT234 datasets demonstrate that the proposed method outperforms the state-of-the-art methods for the task of RGB-T tracking.

Keywords: based bilinear; rgb; bilinear pooling; attention based; graph attention; rgb tracking

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.