Emulating the spike-based processing in the brain, spiking neural networks (SNNs) are developed and act as a promising candidate for the new generation of artificial neural networks that aim to… Click to show full abstract
Emulating the spike-based processing in the brain, spiking neural networks (SNNs) are developed and act as a promising candidate for the new generation of artificial neural networks that aim to produce efficient cognitions as the brain. Due to the complex dynamics and nonlinearity of SNNs, designing efficient learning algorithms has remained a major difficulty, which attracts great research attention. Most existing ones focus on the adjustment of synaptic weights. However, other components, such as synaptic delays, are found to be adaptive and important in modulating neural behavior. How could plasticity on different components cooperate to improve the learning of SNNs remains as an interesting question. Advancing our previous multispike learning, we propose a new joint weight-delay plasticity rule, named TDP-DL, in this article. Plastic delays are integrated into the learning framework, and as a result, the performance of multispike learning is significantly improved. Simulation results highlight the effectiveness and efficiency of our TDP-DL rule compared to baseline ones. Moreover, we reveal the underlying principle of how synaptic weights and delays cooperate with each other through a synthetic task of interval selectivity and show that plastic delays can enhance the selectivity and flexibility of neurons by shifting information across time. Due to this capability, useful information distributed away in the time domain can be effectively integrated for a better accuracy performance, as highlighted in our generalization tasks of the image, speech, and event-based object recognitions. Our work is thus valuable and significant to improve the performance of spike-based neuromorphic computing.
               
Click one of the above tabs to view related content.