LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Data-Efficient Off-Policy Learning for Distributed Optimal Tracking Control of HMAS With Unidentified Exosystem Dynamics.

Photo by sickhews from unsplash

In this article, a data-efficient off-policy reinforcement learning (RL) approach is proposed for distributed output tracking control of heterogeneous multiagent systems (HMASs) using approximate dynamic programming (ADP). Different from existing… Click to show full abstract

In this article, a data-efficient off-policy reinforcement learning (RL) approach is proposed for distributed output tracking control of heterogeneous multiagent systems (HMASs) using approximate dynamic programming (ADP). Different from existing results that the kinematic model of the exosystem is addressable to partial or all agents, the dynamics of the exosystem are assumed to be completely unknown for all agents in this article. To solve this difficulty, an identifiable algorithm using the experience-replay method is designed for each agent to identify the system matrices of the novel reference model instead of the original exosystem. Then, an output-based distributed adaptive output observer is proposed to provide the estimations of the leader, and the proposed observer not only has a low dimension and less data transmission among agents but also is implemented in a fully distributed way. Besides, a data-efficient RL algorithm is given to design the optimal controller offline along with the system trajectories without solving output regulator equations. An ADP approach is developed to iteratively solve game algebraic Riccati equations (GAREs) using online information of state and input in an online way, which relaxes the requirement of knowing prior knowledge of agents' system matrices in an offline way. Finally, a numerical example is provided to verify the effectiveness of theoretical analysis.

Keywords: efficient policy; exosystem; output; data efficient; tracking control

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.