LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conditional Convolution Projecting Latent Vectors on Condition-Specific Space.

Photo from wikipedia

Despite rapid advancements over the past several years, the conditional generative adversarial networks (cGANs) are still far from being perfect. Although one of the major concerns of the cGANs is… Click to show full abstract

Despite rapid advancements over the past several years, the conditional generative adversarial networks (cGANs) are still far from being perfect. Although one of the major concerns of the cGANs is how to provide the conditional information to the generator, there are not only no ways considered as the optimal solution but also a lack of related research. This brief presents a novel convolution layer, called the conditional convolution (cConv) layer, which incorporates the conditional information into the generator of the generative adversarial networks (GANs). Unlike the most general framework of the cGANs using the conditional batch normalization (cBN) that transforms the normalized feature maps after convolution, the proposed method directly produces conditional features by adjusting the convolutional kernels depending on the conditions. More specifically, in each cConv layer, the weights are conditioned in a simple but effective way through filter-wise scaling and channel-wise shifting operations. In contrast to the conventional methods, the proposed method with a single generator can effectively handle condition-specific characteristics. The experimental results on CIFAR, LSUN, and ImageNet datasets show that the generator with the proposed cConv layer achieves a higher quality of conditional image generation than that with the standard convolution layer.

Keywords: conditional convolution; condition specific; layer; generator; convolution

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.