Considering a wide range of applications of nonnegative matrix factorization (NMF), many NMF and their variants have been developed. Since previous NMF methods cannot fully describe complex inner global and… Click to show full abstract
Considering a wide range of applications of nonnegative matrix factorization (NMF), many NMF and their variants have been developed. Since previous NMF methods cannot fully describe complex inner global and local manifold structures of the data space and extract complex structural information, we propose a novel NMF method called dual-graph global and local concept factorization (DGLCF). To properly describe the inner manifold structure, DGLCF introduces the global and local structures of the data manifold and the geometric structure of the feature manifold into CF. The global manifold structure makes the model more discriminative, while the two local regularization terms simultaneously preserve the inherent geometry of data and features. Finally, we analyze convergence and the iterative update rules of DGLCF. We illustrate clustering performance by comparing it with latest algorithms on four real-world datasets.
               
Click one of the above tabs to view related content.