LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix Measure-Based Event-Triggered Impulsive Quasi-Synchronization on Coupled Neural Networks.

Photo from wikipedia

In this article, the quasi-synchronization for a kind of coupled neural networks with time-varying delays is investigated via a novel event-triggered impulsive control approach. In view of the randomly occurring… Click to show full abstract

In this article, the quasi-synchronization for a kind of coupled neural networks with time-varying delays is investigated via a novel event-triggered impulsive control approach. In view of the randomly occurring uncertainties (ROUs) in the communication channels, the global quasi-synchronization for the coupled neural networks within a given error bound is considered instead of discussing the complete synchronization. A kind of distributed event-triggered impulsive controllers is presented with considering the Bernoulli stochastic variables based on ROUs, which works at each event-triggered impulsive instant. According to the matrix measure method and the Lyapunov stability theorem, several sufficient conditions for the realization of the quasi-synchronization are successfully derived. Combining with the mathematical methodology with the formula of variation of parameters and the comparison principle for the impulsive systems with time-varying delays, the convergence rate and the synchronization error bound are precisely estimated. Meanwhile, the Zeno behaviors could be eliminated in the coupled neural network with the proposed event-triggered function. Finally, a numerical example is presented to prove the results of theoretical analysis.

Keywords: event triggered; neural networks; coupled neural; quasi synchronization; synchronization

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.