LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sampled-Data Control for Exponential Synchronization of Delayed Inertial Neural Networks With Aperiodic Sampling and State Quantization.

Photo by ellenaalice from unsplash

This article is devoted to dealing with exponential synchronization for inertial neural networks (INNs) with heterogeneous time-varying delays (HTVDs) under the framework of aperiodic sampling and state quantization. First, by… Click to show full abstract

This article is devoted to dealing with exponential synchronization for inertial neural networks (INNs) with heterogeneous time-varying delays (HTVDs) under the framework of aperiodic sampling and state quantization. First, by taking the effect of aperiodic sampling and state quantization into consideration, a novel quantized sampled-data (QSD) controller with time-varying control gain is designed to tackle the exponential synchronization of INNs. Second, considering the available information of the lower and upper bounds of each HTVD, a refined Lyapunov-Krasovskii functional (LKF) is proposed. Meanwhile, an improved looped-functional method is utilized to fully capture the characteristic of practical sampling patterns and further relax the positive definiteness requirement for LKF. Consequently, less conservative exponential synchronization conditions with extra flexibility are derived. Finally, a numerical example is employed to demonstrate the effectiveness and advantages of the proposed synchronization method.

Keywords: exponential synchronization; neural networks; aperiodic sampling; sampling state; state quantization; synchronization

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.