LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distributed Adaptive Forwarding Finite-Time Output Consensus of High-Order Multiagent Systems via Immersion and Invariance-Based Approximator.

Photo by jontyson from unsplash

A finite-time output consensus control problem is investigated in this article for an uncertain nonlinear high-order multiagent systems (MASs). For this class of MASs, the order of individual follower is… Click to show full abstract

A finite-time output consensus control problem is investigated in this article for an uncertain nonlinear high-order multiagent systems (MASs). For this class of MASs, the order of individual follower is reduced gradually by implementing the immersion and invariance (I&I) control theory repeatedly, and a requirement of solving partial differential equations (PDEs) in I&I control theory is obviated. Furthermore, an I&I-based radial basis function neural network (RBFNN) approximator is developed, where an extra cross term is added in the approximation mechanism, and the form of an update law for weights is transformed into a proportional and integral one. This I&I-based RBFNN approximator does not rely on a cancellation of the perturbation term, and these uncertainties are reconstructed by the I&I manifold adaptively, which is for improvement of approximation behaviors of traditional RBFNNs. On this basis, a distributed adaptive forwarding finite-time output consensus control strategy is proposed by combining a sign function, and the convergence time of the MAS can be adjusted with appropriate finite-time parameters. Finally, two illustrative examples verify the effectiveness of the theoretical claims.

Keywords: output consensus; time; finite time; time output

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.