Recently, deep multi-view clustering (MVC) has attracted increasing attention in multi-view learning owing to its promising performance. However, most existing deep multi-view methods use single-pathway neural networks to extract features… Click to show full abstract
Recently, deep multi-view clustering (MVC) has attracted increasing attention in multi-view learning owing to its promising performance. However, most existing deep multi-view methods use single-pathway neural networks to extract features of each view, which cannot explore comprehensive complementary information and multilevel features. To tackle this problem, we propose a deep structured multi-pathway network (SMpNet) for multi-view subspace clustering task in this brief. The proposed SMpNet leverages structured multi-pathway convolutional neural networks to explicitly learn the subspace representations of each view in a layer-wise way. By this means, both low-level and high-level structured features are integrated through a common connection matrix to explore the comprehensive complementary structure among multiple views. Moreover, we impose a low-rank constraint on the connection matrix to decrease the impact of noise and further highlight the consensus information of all the views. Experimental results on five public datasets show the effectiveness of the proposed SMpNet compared with several state-of-the-art deep MVC methods.
               
Click one of the above tabs to view related content.