LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Event-Triggered Guarantee Cost Control for Partially Unknown Stochastic Systems via Explorized Integral Reinforcement Learning Strategy.

Photo from wikipedia

In this article, an integral reinforcement learning (IRL)-based event-triggered guarantee cost control (GCC) approach is proposed for stochastic systems which are modulated by randomly time-varying parameters. First, with the aid… Click to show full abstract

In this article, an integral reinforcement learning (IRL)-based event-triggered guarantee cost control (GCC) approach is proposed for stochastic systems which are modulated by randomly time-varying parameters. First, with the aid of the RL algorithm, the optimal GCC (OGCC) problem is converted into an optimal zero-sum game by solving a modified Hamilton-Jacobin-Isaac (HJI) equation of the auxiliary system. Moreover, in order to address the stochastic zero-sum game, we propose an on-policy IRL-based control approach involved by the multivariate probabilistic collocation method (MPCM), which can accurately predict the mean value of uncertain functions with randomly time-varying parameters. Furthermore, a novel GCC method, which combines the explorized IRL algorithm and MPCM, is designed to relax the restriction of knowing the system dynamics for the class of stochastic systems. On this foundation, for the purpose of reducing computation cost and avoiding the waste of resources, we propose an event-triggered GCC approach involved with explorized IRL and MPCM by utilizing critic-actor-disturbance neural networks (NNs). Meanwhile, the weight vectors of three NNs are updated simultaneously and aperiodically according to the designed triggering condition. The ultimate boundedness (UB) properties of the controlled systems have been proved by means of the Lyapunov theorem. Finally, the effectiveness of the developed GCC algorithms is illustrated via two simulation examples.

Keywords: stochastic systems; event triggered; cost; control; integral reinforcement

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.