LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interaction-and-Response Network for Distantly Supervised Relation Extraction.

Distantly supervised relation extraction (DSRE) aims to identify semantic relations from massive plain texts. A broad range of the prior research has leveraged a series of selective attention mechanisms over… Click to show full abstract

Distantly supervised relation extraction (DSRE) aims to identify semantic relations from massive plain texts. A broad range of the prior research has leveraged a series of selective attention mechanisms over sentences in a bag to extract relation features without considering dependencies among the relation features. As a result, potential discriminative information existed in the dependencies is ignored, causing a decline in the performance of extracting entity relations. In this article, we focus on going beyond the selective attention mechanisms and propose a new framework termed interaction-and-response network (IR-Net) that adaptively recalibrates the features of sentence, bag, and group levels by explicitly modeling interdependencies among the features on each level. The IR-Net consists of a series of interactive and responsive modules throughout feature hierarchy, seeking to strengthen its power of learning salient discriminative features for distinguishing entity relations. We conduct extensive experiments on three benchmark DSRE datasets, including NYT-10, NYT-16, and Wiki-20m. The experimental results demonstrate that the IR-Net brings obvious improvements in performance when comparing ten state-of-the-art DSRE methods for entity relation extraction.

Keywords: distantly supervised; relation extraction; interaction response; supervised relation; relation

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.