LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quasi-Synchronization of Discrete-Time-Delayed Heterogeneous-Coupled Neural Networks via Hybrid Impulsive Control.

This article explores the quasi-synchronization of discrete-time-delayed heterogeneous-coupled neural networks (CNNs) via hybrid impulsive control. By introducing an exponential decay function, two non-negative regions are introduced that are named time-triggering… Click to show full abstract

This article explores the quasi-synchronization of discrete-time-delayed heterogeneous-coupled neural networks (CNNs) via hybrid impulsive control. By introducing an exponential decay function, two non-negative regions are introduced that are named time-triggering and event-triggering regions, respectively. The hybrid impulsive control is modeled by the dynamical location of Lyapunov functional in two regions. When the Lyapunov functional locates in the time-triggering region, the isolated neuron node releases impulses to corresponding nodes in a periodical manner. Whereas, when the trajectory locates in the event-triggering region, the event-triggered mechanism (ETM) is activated, and there are no impulses. Under the proposed hybrid impulsive control algorithm, sufficient conditions are derived for quasi-synchronization with a definite error convergence level. Compared with pure time-triggered impulsive control (TTIC), the proposed hybrid impulsive control method can effectively reduce the times of impulses and save communication resources on the premise of ensuring performance. Finally, an illustrative example is given to verify the validity of the proposed method.

Keywords: time; neural networks; control; hybrid impulsive; quasi synchronization; impulsive control

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.