LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Human-in-the-Loop Behavior Modeling via an Integral Concurrent Adaptive Inverse Reinforcement Learning.

Photo by paipai90 from unsplash

One goal of artificial intelligence (AI) research is to teach machines how to learn from humans, such that they can perform a certain task in a natural human-like way. In… Click to show full abstract

One goal of artificial intelligence (AI) research is to teach machines how to learn from humans, such that they can perform a certain task in a natural human-like way. In this article, an online adaptive inverse reinforcement learning (IRL) approach to human behavior modeling is proposed to enhance machine intelligence for a class of linear human-in-the-loop (HiTL) systems using the state data only, where the human behavior is described by a linear quadratic optimal control model with an unknown weighting matrix for the quadratic cost function. First, an integral concurrent adaptive law is developed to learn the human feedback gain matrix online using the demonstrated state data only, which removes the persistent excitation (PE) conditions required by traditional adaptive estimation approaches and thus is more in line with real applications. Then, with the learned feedback gain matrix, the IRL problem is formulated as a linear matrix inequality (LMI) optimization problem, which can be efficiently solved to retrieve the weighting matrix of the human cost function. Finally, a simulation example is provided to illustrate the effectiveness of the proposed approach.

Keywords: human loop; reinforcement learning; behavior; behavior modeling; inverse reinforcement; adaptive inverse

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.