This study concentrates on the fixed-time tracking consensus and containment control of second-order heterogeneous nonlinear multiagent systems (MASs) with and without measurable velocity under directed topology. By defining a time-varying… Click to show full abstract
This study concentrates on the fixed-time tracking consensus and containment control of second-order heterogeneous nonlinear multiagent systems (MASs) with and without measurable velocity under directed topology. By defining a time-varying scaling function and approximating the unknown nonlinear dynamics with radial basis function neural networks (RBFNNs), a novel distributed protocol for solving the fixed-time tracking consensus and containment control problems of second-order heterogeneous nonlinear MASs with full states available is proposed based on a nonsingular sliding-mode control method constructed by designing a prescribed-time convergent sliding surface. For the scenario of immeasurable velocity, a fixed-time convergent states' observer is designed to reveal the velocity information when the unknown linearity is bounded. Subsequently, a distributed fixed-time consensus protocol based on observed velocity information is proposed for the extended results. Ultimately, the acquired results are verified by three simulation examples.
               
Click one of the above tabs to view related content.