LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tensor Completion Using Bilayer Multimode Low-Rank Prior and Total Variation.

Photo by martinsanchez from unsplash

In this article, we propose a novel bilayer low-rankness measure and two models based on it to recover a low-rank (LR) tensor. The global low rankness of underlying tensor is… Click to show full abstract

In this article, we propose a novel bilayer low-rankness measure and two models based on it to recover a low-rank (LR) tensor. The global low rankness of underlying tensor is first encoded by LR matrix factorizations (MFs) to the all-mode matricizations, which can exploit multiorientational spectral low rankness. Presumably, the factor matrices of all-mode decomposition are LR, since local low-rankness property exists in within-mode correlation. In the decomposed subspace, to describe the refined local LR structures of factor/subspace, a new low-rankness insight of subspace: a double nuclear norm scheme is designed to explore the so-called second-layer low rankness. By simultaneously representing the bilayer low rankness of the all modes of the underlying tensor, the proposed methods aim to model multiorientational correlations for arbitrary N -way ( N ≥ 3 ) tensors. A block successive upper-bound minimization (BSUM) algorithm is designed to solve the optimization problem. Subsequence convergence of our algorithms can be established, and the iterates generated by our algorithms converge to the coordinatewise minimizers in some mild conditions. Experiments on several types of public datasets show that our algorithm can recover a variety of LR tensors from significantly fewer samples than its counterparts.

Keywords: low rankness; rankness; low rank; tensor completion

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.