LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interpretable Model-Driven Deep Network for Hyperspectral, Multispectral, and Panchromatic Image Fusion.

Photo from wikipedia

Simultaneously fusing hyperspectral (HS), multispectral (MS), and panchromatic (PAN) images brings a new paradigm to generate a high-resolution HS (HRHS) image. In this study, we propose an interpretable model-driven deep… Click to show full abstract

Simultaneously fusing hyperspectral (HS), multispectral (MS), and panchromatic (PAN) images brings a new paradigm to generate a high-resolution HS (HRHS) image. In this study, we propose an interpretable model-driven deep network for HS, MS, and PAN image fusion, called HMPNet. We first propose a new fusion model that utilizes a deep before describing the complicated relationship between the HRHS and PAN images owing to their large resolution difference. Consequently, the difficulty of traditional model-based approaches in designing suitable hand-crafted priors can be alleviated because this deep prior is learned from data. We further solve the optimization problem of this fusion model based on the proximal gradient descent (PGD) algorithm, achieved by a series of iterative steps. By unrolling these iterative steps into several network modules, we finally obtain the HMPNet. Therefore, all parameters besides the deep prior are learned in the deep network, simplifying the selection of optimal parameters in the fusion and achieving a favorable equilibrium between the spatial and spectral qualities. Meanwhile, all modules contained in the HMPNet have explainable physical meanings, which can improve its generalization capability. In the experiment, we exhibit the advantages of the HMPNet over other state-of-the-art methods from the aspects of visual comparison and quantitative analysis, where a series of simulated as well as real datasets are utilized for validation.

Keywords: network; fusion; hyperspectral multispectral; model; deep network; image

Journal Title: IEEE transactions on neural networks and learning systems
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.