LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dose Rate Linearity in 4H-SiC Schottky Diode-Based Detectors at Elevated Temperatures

Photo from wikipedia

The outstanding material properties make silicon carbide radiation hard and this ability has enabled it to be demonstrated in a range of detector structures for deployment in extreme environments, including… Click to show full abstract

The outstanding material properties make silicon carbide radiation hard and this ability has enabled it to be demonstrated in a range of detector structures for deployment in extreme environments, including those where the ability to tolerate high radiation dose is imperative. This includes applications in space and nuclear environments, where the ability to detect highly energetic radiation is important. In contrast, detectors used in medical treatment, such as imaging and radiotherapy, use a range of radiation dose rates and energies for both particulate and photonic radiation. Here, we report the response and dose rate linearity of detectors fabricated from silicon carbide to dose rates in the range of 0.185 mGy $\cdot$ min−1, typical of those used for medical imaging. The data show that the radiation detected current originates within the depletion region of the detector and that the response is linearly dependent on the volume of the space charge region. The realization of a vertical detector structure, coupled with the high quality of epitaxial layers, has resulted in a high dose sensitivity of the detector that is highly linear. The temperature dependence of the characteristics indicates that silicon carbide Schottky diode-based detectors offer a performance suitable for medical applications at temperatures below 100 °C without the need for external cooling.

Keywords: schottky diode; rate linearity; radiation; based detectors; diode based; dose rate

Journal Title: IEEE Transactions on Nuclear Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.