LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Neural Network Model With Explainable AI for Measuring Uranium Enrichment

Photo by markusspiske from unsplash

In this work, we have developed a neural network (NN) model that can analyze enrichment from depleted (0.2%) to low enriched uranium (4.5%) when UO2 waste with very low radioactivity… Click to show full abstract

In this work, we have developed a neural network (NN) model that can analyze enrichment from depleted (0.2%) to low enriched uranium (4.5%) when UO2 waste with very low radioactivity was contained in a 1-L Marinelli beaker, even when the measurement time is as short as 10 s using a low-resolution detector. The average count rate was about 3800 cps. Measurement of uranium enrichment is necessary for quantitative analysis of uranium radioactivity for disposal of uranium waste. Previously studied uranium enrichment methods (infinite thickness (IT) method, peak ratio (PR) method, and relative-efficiency (RE) method) are difficult to use for field measurement due to many limitations of the algorithms. Among existing methods, the RE method is accurate but requires a long measurement time; there is also a limitation in which a high-resolution detector is essential. In this work, we proposed a model to predict uranium enrichment using a low-resolution detector and an artificial NN model. Furthermore, we validated the results of the NN models using an explainable AI algorithm and principal component analysis (PCA). When the measurement time was less than 60 s, the existing method failed to analyze uranium enrichment, but the proposed model can predict enrichment of uranium within 5% of relative error when 5 g of uranium powder was mixed with various waste (ash, soil, and concrete).

Keywords: enrichment; uranium enrichment; method; neural network; network model

Journal Title: IEEE Transactions on Nuclear Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.