Detecting core-periphery structures is one of the outstanding issues in complex network analysis. Various algorithms can identify core nodes and periphery nodes. Recent advances found that many networks from real-world… Click to show full abstract
Detecting core-periphery structures is one of the outstanding issues in complex network analysis. Various algorithms can identify core nodes and periphery nodes. Recent advances found that many networks from real-world data can be better modeled with multiple pairs of core-periphery nodes. In this study, we propose to use an influence propagation process to detect multiple pairs of core-periphery nodes. In this framework, we assume each node can emit a certain amount of influence and propagate it through the network. Then we identify nodes with large influences as core nodes, and we utilize a maximum influence chain to construct a node-pairing network to determine core-periphery pairs. This approach can take node interactions into consideration and can reduce noises in finding pairs. Experiments on randomly generated networks and real-world networks confirm the efficiency and accuracy of our algorithm.
               
Click one of the above tabs to view related content.