Quality of service (QoS) has been mostly applied to represent non-functional properties of Web services and differentiate those with the same functionality. How to accurately predict service QoS has become… Click to show full abstract
Quality of service (QoS) has been mostly applied to represent non-functional properties of Web services and differentiate those with the same functionality. How to accurately predict service QoS has become a key research topic. Researchers have employed neighborhood information into matrix factorization (MF) for service QoS prediction in recent years. However, they are restricted to traditional matrix factorization that may incur a couple of limitations. 1) Conventional MF for QoS prediction linearly combines the multiplication of the latent feature representation of users and services through inner product, failing to fully capture the implicit features of user and service. 2) Most of approaches integrate user or service neighborhood as heuristics into MF model, where either location context or historical invocation records are used to calculate similar users or services. Nevertheless, combining both of them together in a collaborative way is ignored for neighborhood selection that has yet to be properly explored. To deal with the challenges, we propose a novel approach for service QoS prediction called
               
Click one of the above tabs to view related content.