LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of Classifier Architectures for Online Neural Spike Sorting

Photo by fourcolourblack from unsplash

High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification.… Click to show full abstract

High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.

Keywords: classification; spike sorting; organizing maps; spike; self organizing; chip

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.