LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessing Dynamic Balance Performance During Exergaming Based on Speed and Curvature of Body Movements

Photo from wikipedia

Improving balance performance among the elderly is of utmost importance because of the increasing number of injuries and fatalities caused by fall incidences. Digital games controlled by body movements (exergames)… Click to show full abstract

Improving balance performance among the elderly is of utmost importance because of the increasing number of injuries and fatalities caused by fall incidences. Digital games controlled by body movements (exergames) have been proposed as a way to improve balance among older people. However, the assessment of balance performance in real-time during exergaming remains a challenging task. This assessment could be used to provide instantaneous feedback and automatically adjust the exergame difficulty. Such features could potentially increase the motivation of the player, thus augmenting the effectiveness of exergames. As clear differences in balance performance have been identified between older and younger people, distinguishing between older and younger adults can help identifying measures of balance performance. We used generalized linear models to investigate whether the assessment of balance performance based on movement speed can be improved by incorporating curvature of the movement trajectory into the analysis. Indeed, our results indicated that curvature improves the performance of the models. Five-fold cross validation indicated that our method is promising for the assessment of balance performance in real-time by showing more than 90% classification accuracy. Finally, this method could be valuable not only for exergaming, but also for real-time assessment of body movements in sports, rehabilitation, and medicine.

Keywords: balance performance; body movements; speed; performance; balance

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.