Powered knee and ankle prostheses can perform a limited number of discrete ambulation tasks. This is largely due to their control architecture, which uses a finite-state machine to select among… Click to show full abstract
Powered knee and ankle prostheses can perform a limited number of discrete ambulation tasks. This is largely due to their control architecture, which uses a finite-state machine to select among a set of task-specific controllers. A non-switching controller that supports a continuum of tasks is expected to better facilitate normative biomechanics. This paper introduces a predictive model that represents gait kinematics as a continuous function of gait cycle percentage, speed, and incline. The basis model consists of two parts: basis functions that produce kinematic trajectories over the gait cycle and task functions that smoothly alter the weight of basis functions in response to task. Kinematic data from 10 able-bodied subjects walking at 27 combinations of speed and incline generate training and validation data for this data-driven model. Convex optimization accurately fits the model to experimental data. Automated model order reduction improves predictive abilities by capturing only the most important kinematic changes due to walking tasks. Constraints on a range of motion and jerk ensure the safety and comfort of the user. This model produces a smooth continuum of trajectories over task, an impossibility for finite-state control algorithms. Random sub-sampling validation indicates that basis modeling predicts untrained kinematics more accurately than linear interpolation.
               
Click one of the above tabs to view related content.