LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Motor Unit Identification From High-Density Surface Electromyograms in Repeated Dynamic Muscle Contractions

Photo from wikipedia

We describe the method for identification of motor unit (MU) firings from high-density surface electromyograms (hdEMG), recorded during repeated dynamic muscle contractions. A new convolutive data model for dynamic hdEMG… Click to show full abstract

We describe the method for identification of motor unit (MU) firings from high-density surface electromyograms (hdEMG), recorded during repeated dynamic muscle contractions. A new convolutive data model for dynamic hdEMG is presented, along with the pulse-to-noise ratio (PNR) metric for assessment of MU identification accuracy and analysis of the impact of MU action potential (MUAP) changes in dynamic muscle contractions on MU identification. We tested the presented methodology on signals from biceps brachii, vastus lateralis, and rectus famoris muscles, all during different speeds of dynamic contractions. In synthetic signals with excitation levels of 10%, 30% and 50%, and MUAPs experimentally recorded from biceps brachii muscle, the presented method identified 15 ± 1, 18 ± 1, and 20 ± 1 MUs per contraction, respectively, all with average sensitivity and precision >90% and PNR >30dB. In experimental signals acquired during low force contractions of vastus lateralis and rectus femoris muscle, the method identified 9.4±1.9 and 7.8±1.4 MUs with PNR values of 35.4±3.6 and 34.1±2.7 dB. In comparison with the previously introduced Convolution Kernel Compensation method, the capability of the new method to follow dynamic MUAP changes is confirmed, also in relatively fast muscle contractions.

Keywords: motor unit; dynamic muscle; muscle; method; muscle contractions; identification

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.