LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hemicraniectomy in Traumatic Brain Injury: A Noninvasive Platform to Investigate High Gamma Activity for Brain Machine Interfaces

Photo from wikipedia

Brain–machine interfaces (BMIs) translate brain signals into control signals for an external device, such as a computer cursor or robotic limb. These signals can be obtained either noninvasively or invasively.… Click to show full abstract

Brain–machine interfaces (BMIs) translate brain signals into control signals for an external device, such as a computer cursor or robotic limb. These signals can be obtained either noninvasively or invasively. Invasive recordings, using electrocorticography (ECoG) or intracortical microelectrodes, provide higher bandwidth and more informative signals. Rehabilitative BMIs, which aim to drive plasticity in the brain to enhance recovery after brain injury, have almost exclusively used non-invasive recordings, such electroencephalography (EEG) or magnetoencephalography (MEG), which have limited bandwidth and information content. Invasive recordings provide more information and spatiotemporal resolution, but do incur risk, and thus are not usually investigated in people with stroke or traumatic brain injury (TBI). Here, in this paper, we describe a new BMI paradigm to investigate the use of higher frequency signals in brain-injured subjects without incurring significant risk. We recorded EEG in TBI subjects who required hemicraniectomies (removal of a part of the skull). EEG over the hemicraniectomy (hEEG) contained substantial information in the high gamma frequency range (65–115 Hz). Using this information, we decoded continuous finger flexion force with moderate to high accuracy (variance accounted for 0.06 to 0.52), which at best approaches that using epidural signals. These results indicate that people with hemicraniectomies can provide a useful resource for developing BMI therapies for the treatment of brain injury.

Keywords: brain machine; machine interfaces; traumatic brain; brain injury; brain

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.