LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Joint Domain Adaptation Network for Motor Imagery Classification

Photo from wikipedia

Electroencephalogram (EEG) has been widely used in brain computer interface (BCI) due to its convenience and reliability. The EEG-based BCI applications are majorly limited by the time-consuming calibration procedure for… Click to show full abstract

Electroencephalogram (EEG) has been widely used in brain computer interface (BCI) due to its convenience and reliability. The EEG-based BCI applications are majorly limited by the time-consuming calibration procedure for discriminative feature representation and classification. Existing EEG classification methods either heavily depend on the handcrafted features or require adequate annotated samples at each session for calibration. To address these issues, we propose a novel dynamic joint domain adaptation network based on adversarial learning strategy to learn domain-invariant feature representation, and thus improve EEG classification performance in the target domain by leveraging useful information from the source session. Specifically, we explore the global discriminator to align the marginal distribution across domains, and the local discriminator to reduce the conditional distribution discrepancy between sub-domains via conditioning on deep representation as well as the predicted labels from the classifier. In addition, we further investigate a dynamic adversarial factor to adaptively estimate the relative importance of alignment between the marginal and conditional distributions. To evaluate the efficacy of our method, extensive experiments are conducted on two public EEG datasets, namely, Datasets IIa and IIb of BCI Competition IV. The experimental results demonstrate that the proposed method achieves superior performance compared with the state-of-the-art methods.

Keywords: domain adaptation; adaptation network; joint domain; dynamic joint; domain; classification

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.