LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD

Photo by bradyn from unsplash

Steady-state visual evoked potential (SSVEP) has been used to implement brain-computer interface (BCI) due to its advantages of high information transfer rate (ITR) and high accuracy. In recent years, owing… Click to show full abstract

Steady-state visual evoked potential (SSVEP) has been used to implement brain-computer interface (BCI) due to its advantages of high information transfer rate (ITR) and high accuracy. In recent years, owing to the developments of head-mounted device (HMD), the HMD has become a popular device to implement SSVEP–based BCI. However, an HMD with fixed frame rate only can flash at its subharmonic frequencies which limits the available number of stimulation frequencies for SSVEP-based BCI. In order to increase the number of available commands for SSVEP-based BCI, we proposed a phase-approaching (PA) method to generate visual stimulation sequences at user-specified frequency on an HMD. The flickering sequence generated by our PA method (PAS sequence) tries to approximate user-specified stimulation frequency by means of minimizing the difference of accumulated phases between our PAS sequence and the ideal wave of user-specified frequency. The generated sequence of PA method determines the brightness state for each frame to approach the accumulated phase of the ideal wave. The SSVEPs evoked from stimulators, driven by PAS sequences, were analyzed using canonical correlation analysis (CCA) to identify user’s gazed target. In this study, a six-command SSVEP-based BCI was designed to operate a flying drone. The ITR and detection accuracy are 36.84 bits/min and 93.30%, respectively.

Keywords: ssvep based; hmd; sequence; based bci; stimulation

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.