LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface

Photo by tronle_sg from unsplash

The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge… Click to show full abstract

The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge when building effective BCI systems. We propose a novel MI classification model based on measurement of functional connectivity between brain regions and graph theory. Specifically, motifs describing local network structures in the brain are extracted from functional connectivity graphs. A graph embedding model called Ego-CNNs is then used to build a classifier, which can convert the graph from a structural representation to a fixed-dimensional vector for detecting critical structure in the graph. We validate our proposed method on four datasets, and the results show that our proposed method produces high classification accuracies in two-class classification tasks (92.8% for dataset 1, 93.4% for dataset 2, 96.5% for dataset 3, and 80.2% for dataset 4) and multiclass classification tasks (90.33% for dataset 1). Our proposed method achieves a mean Kappa value of 0.88 across nine participants, which is superior to other methods we compared it to. These results indicate that there is a local structural difference in functional connectivity graphs extracted under different motor imagery tasks. Our proposed method has great potential for motor imagery classification in future studies.

Keywords: motor imagery; classification; imagery based; brain

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.