LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving Cross-State and Cross-Subject Visual ERP-Based BCI With Temporal Modeling and Adversarial Training

Photo from wikipedia

Brain-computer interface (BCI) is a useful device for people without relying on peripheral nerves and muscles. However, the performance of the event-related potential (ERP)-based BCI declines when applying it to… Click to show full abstract

Brain-computer interface (BCI) is a useful device for people without relying on peripheral nerves and muscles. However, the performance of the event-related potential (ERP)-based BCI declines when applying it to real environments, especially in cross-state and cross-subject conditions. Here we employ temporal modeling and adversarial training to improve the visual ERP-based BCI under different mental workload states and to alleviate the problems above. The rationality of our method is that the ERP-based BCI is based on electroencephalography (EEG) signals recorded from the scalp’s surface, continuously changing with time and somewhat stochastic. In this paper, we propose a hierarchical recurrent network to encode all ERP signals in each repetition at the same time and model them with a temporal manner to predict which visual event elicited an ERP. The hierarchical architecture is a simple yet effective method for organizing recurrent layers in a deep structure to model long sequence signals. Taking a cue from recent advances in adversarial training, we further applied dynamic adversarial perturbations to create adversarial examples to enhance the model performance. We conduct our experiments on one published visual ERP-based BCI task with 15 subjects and 3 different auditory workload states. The results indicate that our hierarchical method can effectively model the long sequence EEG raw data, outperform the baselines on most conditions, including cross-state and cross-subject conditions. Finally, we show how deep learning-based methods with limited EEG data can improve ERP-based BCI with adversarial training. Our code is available at https://github.com/aispeech-lab/VisBCI.

Keywords: cross state; cross; adversarial training; based bci; erp based

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.