LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation

Photo from wikipedia

Medically oriented Brain Computer Interfaces (BCIs) have been proposed as a promising approach addressed to individuals suffering from severe paralysis. Steady-State Visual Evoked Potentials (SSVEPs) in particular have been proven… Click to show full abstract

Medically oriented Brain Computer Interfaces (BCIs) have been proposed as a promising approach addressed to individuals suffering from severe paralysis. Steady-State Visual Evoked Potentials (SSVEPs) in particular have been proven successful in many different applications, achieving high information throughput with short or even no training. However, efficient electric wheelchair navigation combining high accuracy and comfort is still not demonstrated. In this paper, we propose the use of an SSVEP-based universal control system featuring augmented reality (AR) glasses in an attempt to increase ease of use and patient acceptability without making compromises on BCI performance. The system received positive user-feedback, reaching a mean accuracy of 90%. Merits and pitfalls of the system proposed are also addressed.

Keywords: wheelchair navigation; state visual; steady state; visual evoked; evoked potentials; augmented reality

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.