LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A BERT Based Method for Continuous Estimation of Cross-Subject Hand Kinematics From Surface Electromyographic Signals

Photo by thanti_riess from unsplash

Estimation of hand kinematics from surface electromyographic (sEMG) signals provides a non-invasive human-machine interface. This approach is usually subject-specific, so that the training on one individual does not generalise to… Click to show full abstract

Estimation of hand kinematics from surface electromyographic (sEMG) signals provides a non-invasive human-machine interface. This approach is usually subject-specific, so that the training on one individual does not generalise to different subjects. In this paper, we propose a method based on Bidirectional Encoder Representation from Transformers (BERT) structure to predict the movement of hands from the root mean square (RMS) feature of the sEMG signal following $\mu $ -law normalization. The method was tested for within-subject and cross-subject conditions. We trained the model with two hard sample mining methods, Gradient Harmonizing Mechanism (GHM) and Online Hard Sample Mining (OHEM). The proposed method was compared with classic approaches, including long short-term memory (LSTM) and Temporal Convolutional Network (TCN) as well as a recent method called Long Exposure Convolutional Memory Network (LE-ConvMN). Correlation coefficient (CC), normalized root mean square error (NRMSE) and time costs were used as performance metrics. Our method (sBERT-OHEM) achieved state-of-the-art performance in cross-subject evaluation as well as high performance in subject-specific tests on the Ninapro dataset. The above tests are based on the same randomly selected 10 subjects. Generally, in the cross-subject situation, with the increasing of the subjects’ number, it unavoidably leads to the decline of the performance. While the performance of our method on 38 subjects was significantly higher than the other methods on 10 subjects in cross-subject conditions, which further verified the advantage of our methods.

Keywords: cross subject; kinematics surface; kinematics; hand kinematics; performance

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.