LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning Spatiotemporal Graph Representations for Visual Perception Using EEG Signals

Photo by goumbik from unsplash

Perceiving and recognizing objects enable interaction with the external environment. Recently, decoding brain signals based on brain-computer interface (BCI) that recognize the user’s intentions by just looking at objects has… Click to show full abstract

Perceiving and recognizing objects enable interaction with the external environment. Recently, decoding brain signals based on brain-computer interface (BCI) that recognize the user’s intentions by just looking at objects has attracted attention as a next-generation intuitive interface. However, classifying signals from different objects is very challenging, and in practice, decoding performance for visual perception is not yet high enough to be used in real environments. In this study, we aimed to classify single-trial electroencephalography signals evoked by visual stimuli into their corresponding semantic category. We proposed a two-stream convolutional neural network to increase classification performance. The model consists of a spatial stream and a temporal stream that use graph convolutional neural network and channel-wise convolutional neural network respectively. Two public datasets were used to evaluate the proposed model; (i) SU DB (a set of 72 photographs of objects belonging to 6 semantic categories) and MPI DB (8 exemplars belonging to two categories). Our results outperform state-of-the-art methods, with accuracies of 54.28 ± 7.89% for SU DB (6-class) and 84.40 ± 8.03% for MPI DB (2-class). These results could facilitate the application of intuitive BCI systems based on visual perception.

Keywords: neural network; visual perception; spatiotemporal graph; convolutional neural; learning spatiotemporal; perception

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.