LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

EEG Conformer: Convolutional Transformer for EEG Decoding and Visualization

Photo by theshubhamdhage from unsplash

Due to the limited perceptual field, convolutional neural networks (CNN) only extract local temporal features and may fail to capture long-term dependencies for EEG decoding. In this paper, we propose… Click to show full abstract

Due to the limited perceptual field, convolutional neural networks (CNN) only extract local temporal features and may fail to capture long-term dependencies for EEG decoding. In this paper, we propose a compact Convolutional Transformer, named EEG Conformer, to encapsulate local and global features in a unified EEG classification framework. Specifically, the convolution module learns the low-level local features throughout the one-dimensional temporal and spatial convolution layers. The self-attention module is straightforwardly connected to extract the global correlation within the local temporal features. Subsequently, the simple classifier module based on fully-connected layers is followed to predict the categories for EEG signals. To enhance interpretability, we also devise a visualization strategy to project the class activation mapping onto the brain topography. Finally, we have conducted extensive experiments to evaluate our method on three public datasets in EEG-based motor imagery and emotion recognition paradigms. The experimental results show that our method achieves state-of-the-art performance and has great potential to be a new baseline for general EEG decoding. The code has been released in https://github.com/eeyhsong/EEG-Conformer.

Keywords: visualization; eeg conformer; eeg decoding; convolutional transformer

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.