LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving Generalization of CNN-Based Motor-Imagery EEG Decoders via Dynamic Convolutions

Photo from wikipedia

Deep Convolutional Neural Networks (CNNs) have recently demonstrated impressive results in electroencephalogram (EEG) decoding for several Brain-Computer Interface (BCI) paradigms, including Motor-Imagery (MI). However, neurophysiological processes underpinning EEG signals vary… Click to show full abstract

Deep Convolutional Neural Networks (CNNs) have recently demonstrated impressive results in electroencephalogram (EEG) decoding for several Brain-Computer Interface (BCI) paradigms, including Motor-Imagery (MI). However, neurophysiological processes underpinning EEG signals vary across subjects causing covariate shifts in data distributions and hence hindering the generalization of deep models across subjects. In this paper, we aim to address the challenge of inter-subject variability in MI. To this end, we employ causal reasoning to characterize all possible distribution shifts in the MI task and propose a dynamic convolution framework to account for shifts caused by the inter-subject variability. Using publicly available MI datasets, we demonstrate improved generalization performance (up to 5%) across subjects in various MI tasks for four well-established deep architectures.

Keywords: eeg; motor imagery; across subjects; generalization

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.