LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exoskeleton Training Modulates Complexity in Movement Patterns and Cortical Activity in Able-Bodied Volunteers

Photo by victorfreitas from unsplash

Robot-aided gait training (RAGT) plays a crucial role in providing high-dose and high-intensity task-oriented physical therapy. The human-robot interaction during RAGT remains technically challenging. To achieve this aim, it is… Click to show full abstract

Robot-aided gait training (RAGT) plays a crucial role in providing high-dose and high-intensity task-oriented physical therapy. The human-robot interaction during RAGT remains technically challenging. To achieve this aim, it is necessary to quantify how RAGT impacts brain activity and motor learning. This work quantifies the neuromuscular effect induced by a single RAGT session in healthy middle-aged individuals. Electromyographic (EMG) and motion (IMU) data were recorded and processed during walking trials before and after RAGT. Electroencephalographic (EEG) data were recorded during rest before and after the entire walking session. Linear and nonlinear analyses detected changes in the walking pattern, paralleled by a modulation of cortical activity in the motor, attentive, and visual cortices immediately after RAGT. Increases in alpha and beta EEG spectral power and pattern regularity of the EEG match the increased regularity of body oscillations in the frontal plane, and the loss of alternating muscle activation during the gait cycle, when walking after a RAGT session. These preliminary results improve the understanding of human-machine interaction mechanisms and motor learning and may contribute to more efficient exoskeleton development for assisted walking.

Keywords: modulates complexity; ragt; training modulates; activity; cortical activity; exoskeleton training

Journal Title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.