Diffusion process has advanced object retrieval greatly as it can capture the underlying manifold structure. Recent studies have experimentally demonstrated that tensor product diffusion can better reveal the intrinsic relationship… Click to show full abstract
Diffusion process has advanced object retrieval greatly as it can capture the underlying manifold structure. Recent studies have experimentally demonstrated that tensor product diffusion can better reveal the intrinsic relationship between objects than other variants. However, the principle remains unclear, i.e., what kind of manifold structure is captured. In this paper, we propose a new affinity learning algorithm called Regularized Diffusion Process (RDP). By deeply exploring the properties of RDP, our first yet basic contribution is providing a manifold-based explanation for tensor product diffusion. A novel criterion measuring the smoothness of the manifold is defined, which simultaneously regularizes four vertices in the affinity graph. Inspired by this observation, we further contribute two variants towards two specific goals. While ARDP can learn similarities across heterogeneous domains, HRDP performs affinity learning on tensor product hypergraph, considering the relationships between objects are generally more complex than pairwise. Consequently, RDP, ARDP and HRDP constitute a generic tool for object retrieval in most commonly-used settings, no matter the input relationships between objects are derived from the same domain or not, and in pairwise formulation or not. Comprehensive experiments on 10 retrieval benchmarks, especially on large scale data, validate the effectiveness and generalization of our work.
               
Click one of the above tabs to view related content.