LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Image Deblurring with a Class-Specific Prior

Photo by shotsbywolf from unsplash

A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. To tackle this issue, existing image deblurring techniques often… Click to show full abstract

A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. To tackle this issue, existing image deblurring techniques often rely on generic image priors such as the sparsity of salient features including image gradients and edges. However, these priors only help recover part of the frequency spectrum, such as the frequencies near the high-end. To this end, we pose the following specific questions: (i) Does any image class information offer an advantage over existing generic priors for image quality restoration? (ii) If a class-specific prior exists, how should it be encoded into a deblurring framework to recover attenuated image frequencies? Throughout this work, we devise a class-specific prior based on the band-pass filter responses and incorporate it into a deblurring strategy. More specifically, we show that the subspace of band-pass filtered images and their intensity distributions serve as useful priors for recovering image frequencies that are difficult to recover by generic image priors. We demonstrate that our image deblurring framework, when equipped with the above priors, significantly outperforms many state-of-the-art methods using generic image priors or class-specific exemplars.

Keywords: specific prior; class specific; image deblurring; class; image; generic image

Journal Title: IEEE Transactions on Pattern Analysis and Machine Intelligence
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.