In the last decade, crowd counting and localization attract much attention of researchers due to its wide-spread applications, including crowd monitoring, public safety, space design, etc. Many convolutional neural networks… Click to show full abstract
In the last decade, crowd counting and localization attract much attention of researchers due to its wide-spread applications, including crowd monitoring, public safety, space design, etc. Many convolutional neural networks (CNN) are designed for tackling this task. However, currently released datasets are so small-scale that they can not meet the needs of the supervised CNN-based algorithms. To remedy this problem, we construct a large-scale congested crowd counting and localization dataset, NWPU-Crowd, consisting of 5,109 images, in a total of 2,133,375 annotated heads with points and boxes. Compared with other real-world datasets, it contains various illumination scenes and has the largest density range (
               
Click one of the above tabs to view related content.