LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recursive Copy and Paste GAN: Face Hallucination from Shaded Thumbnails.

Photo by chrisjoelcampbell from unsplash

Existing face hallucination methods based on convolutional neural networks (CNNs) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR… Click to show full abstract

Existing face hallucination methods based on convolutional neural networks (CNNs) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are captured in non-uniform illumination conditions. This paper proposes a Recursive Copy and Paste Generative Adversarial Network (Re-CPGAN) to recover authentic high-resolution (HR) face images while compensating for non-uniform illumination. To this end, we develop two key components in our Re-CPGAN: internal and recursive external Copy and Paste networks (CPnets). Our internal CPnet exploits facial self-similarity information residing in the input image to enhance facial details; while our recursive external CPnet leverages an external guided face for illumination compensation. Specifically, our recursive external CPnet stacks multiple external Copy and Paste (EX-CP) units in a compact model to learn normal illumination and enhance facial details recursively. By doing so, our method offsets illumination and upsamples facial details progressively in a coarse-to-fine fashion, thus alleviating the ambiguity of correspondences between LR inputs and external guided inputs. Furthermore, a new illumination compensation loss is developed to capture illumination from the external guided face image effectively. Extensive experiments demonstrate that our method achieves authentic HR images in a uniform illumination condition with a 16x magnification factor and outperforms state-of-the-art methods qualitatively and quantitatively.

Keywords: copy paste; illumination; face hallucination; face

Journal Title: IEEE transactions on pattern analysis and machine intelligence
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.