LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Face Restoration via Plug-and-Play 3D Facial Priors.

Photo from wikipedia

State-of-the-art face restoration methods employ deep convolutional neural networks (CNNs) to learn a mapping between degraded and sharp facial patterns by exploring local appearance knowledge. However, most of these methods… Click to show full abstract

State-of-the-art face restoration methods employ deep convolutional neural networks (CNNs) to learn a mapping between degraded and sharp facial patterns by exploring local appearance knowledge. However, most of these methods do not well exploit facial structures and identity information, and only deal with task-specific face restoration (e.g.,face super-resolution or deblurring). In this paper, we propose cross-tasks and cross-models plug-and-play 3D facial priors to explicitly embed the network with the sharp facial structures for general face restoration tasks. Our 3D priors are the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes (e.g., identity, facial expression, texture, illumination, and face pose). Furthermore, the priors can easily be incorporated into any network and are very efficient in improving the performance and accelerating the convergence speed. Firstly, a 3D face rendering branch is set up to obtain 3D priors of salient facial structures and identity knowledge. Secondly, for better exploiting this hierarchical information (i.e., intensity similarity, 3D facial structure, and identity content), a spatial attention module is designed for image restoration problems. Extensive face restoration experiments including face super-resolution and deblurring demonstrate that the proposed 3D priors achieve superior face restoration results over the state-of-the-art algorithms.

Keywords: face; facial priors; play facial; face restoration; restoration; plug play

Journal Title: IEEE transactions on pattern analysis and machine intelligence
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.