Embodied Question Answering (EQA) is a newly defined research area where an agent is required to answer the user's questions by exploring the real-world environment. It has attracted increasing research… Click to show full abstract
Embodied Question Answering (EQA) is a newly defined research area where an agent is required to answer the user's questions by exploring the real-world environment. It has attracted increasing research interests due to its broad applications in personal assistants and in-home robots. Most of the existing methods perform poorly in terms of answering and navigation accuracy due to the absence of fine-level semantic information, stability to the ambiguity, and 3D spatial information of the virtual environment. To tackle these problems, we propose a depth and segmentation based visual attention mechanism for Embodied Question Answering. First, we extract local semantic features by introducing a novel high-speed video segmentation framework. Then guided by the extracted semantic features, a depth and segmentation based visual attention mechanism is proposed for the Visual Question Answering (VQA) sub-task. Further, a feature fusion strategy is designed to guide the navigator's training process without much additional computational cost. The ablation experiments show that our method effectively boosts the performance of the VQA module and navigation module, leading to 4.9
               
Click one of the above tabs to view related content.