Instance image retrieval could greatly benefit from discovering objects in the image dataset. This not only helps produce more reliable feature representation but also better informs users by delineating query-matched… Click to show full abstract
Instance image retrieval could greatly benefit from discovering objects in the image dataset. This not only helps produce more reliable feature representation but also better informs users by delineating query-matched object regions. However, object classes are usually not predefined in a retrieval dataset and class label information is generally unavailable in image retrieval. This situation makes object discovery a challenging task. To address this, we propose a novel dataset-driven unsupervised object discovery framework. By utilizing deep feature representation and weakly-supervised object detection, we explore supervisory information from within an image dataset, construct class-wise object detectors, and assign multiple detectors to each image for detection. To efficiently construct object detectors for large image datasets, we propose a novel “base-detector repository” and derive a fast way to generate the base detectors. In addition, the whole framework is designed to work in a self-boosting manner to iteratively refine object discovery. Compared with existing unsupervised object detection methods, our framework produces more accurate object discovery results. Different from supervised detection, we need neither manual annotation nor auxiliary datasets to train object detectors. Experimental study demonstrates the effectiveness of the proposed framework and the improved performance for region-based instance image retrieval.
               
Click one of the above tabs to view related content.