LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning Representations by Graphical Mutual Information Estimation and Maximization.

Photo by strong18philip from unsplash

The rich content in various real-world networks such as social networks, biological networks, and communication networks provides unprecedented opportunities for unsupervised machine learning on graphs. This paper investigates the fundamental… Click to show full abstract

The rich content in various real-world networks such as social networks, biological networks, and communication networks provides unprecedented opportunities for unsupervised machine learning on graphs. This paper investigates the fundamental problem of preserving and extracting abundant information from graph-structured data into embedding space without external supervision. To this end, we generalize conventional mutual information computation from vector space to graph domain and present a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graph and hidden representation. Except for standard GMI which considers graph structures from a local perspective, our further proposed GMI++ additionally captures global topological properties by analyzing the co-occurrence relationship of nodes. GMI and its extension exhibit several benefits: First, they are invariant to the isomorphic transformation of input graphs---an inevitable constraint in many existing methods; Second, they can be efficiently estimated and maximized by current mutual information estimation methods; Lastly, our theoretical analysis confirms their correctness and rationality. With the aid of GMI, we develop an unsupervised embedding model and adapt it to the specific anomaly detection task. Extensive experiments indicate that our GMI methods achieve promising performance in various downstream tasks, such as node classification, link prediction, and anomaly detection.

Keywords: mutual information; graphical mutual; gmi; information estimation; information

Journal Title: IEEE transactions on pattern analysis and machine intelligence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.