LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian Image Super-Resolution With Deep Modeling of Image Statistics

Photo by usgs from unsplash

Modeling statistics of image priors is useful for image super-resolution, but little attention has been paid from the massive works of deep learning-based methods. In this work, we propose a… Click to show full abstract

Modeling statistics of image priors is useful for image super-resolution, but little attention has been paid from the massive works of deep learning-based methods. In this work, we propose a Bayesian image restoration framework, where natural image statistics are modeled with the combination of smoothness and sparsity priors. Concretely, first we consider an ideal image as the sum of a smoothness component and a sparsity residual, and model real image degradation including blurring, downscaling, and noise corruption. Then, we develop a variational Bayesian approach to infer their posteriors. Finally, we implement the variational approach for single image super-resolution (SISR) using deep neural networks, and propose an unsupervised training strategy. The experiments on three image restoration tasks, i.e., ideal SISR, realistic SISR, and real-world SISR, demonstrate that our method has superior model generalizability against varying noise levels and degradation kernels and is effective in unsupervised SISR. The code and resulting models are released via https://zmiclab.github.io/projects.html.

Keywords: bayesian image; image statistics; super resolution; image super; image

Journal Title: IEEE Transactions on Pattern Analysis and Machine Intelligence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.